تفسیر دنیاهای چندگانه
این تفسیر را به این نامها نیز میخوانند: فرمولبندی حالت نسبی، نظریهٔ تابع موج جهانی و دنیاهای موازی.
تفسیر دنیاهای چندگانه، فروکاهی تابع موج را نمیپذیرد و این فروکاهیِ ظاهری را با سازوکار واهمدوسی کوانتومی توضیح میدهد. برخی میگویند که با این تفسیر همه پارادکسهای مکانیک کوانتومی، از جمله پارادکس EPR حل میشوند، زیرا هرکدام از نتیجههای ممکن برای یک رویداد در «جهان جداگانهای» رخ میدهد. به زبان دیگر، شمار بسیار زیادی و شاید بینهایت جهان وجود دارد و هرآنچه میتوانست در دنیای ما رخ دهد و رخ نداده است در جهان های دیگری رخ داده است.
طرفداران این تفسیر میگویند که تفسیر دنیاهای چندگانه پاسخی به این پرسش است که «چگونه میتوان با معادلههای تعینگرایانه مکانیک کوانتومی، پدیدههای تصادفی مانند واپاشی تصادفی اتمهای پرتوزا را توضیح داد؟» پیش از آن، رویدادها به شکل جهانخطهای تکی دیده میشدند. ولی تفسیر دنیاهای چندگانه رویدادها را به شکل درختهایی از جهانخط ها که شاخهشاخه شدهاند میبیند.
فرمولبندی حالتهای نسبی را هیوْ اِوِرِت در سال ۱۹۵۷ بارآورد. در دهههای ۱۹۶۰ و ۱۹۷۰ برایس دویت این فرمولبندی را به نام دنیاهای چندگانه خواند و آن را همهگیر کرد. رهیافت واهمدوسی به تفسیر مکانیک کوانتومی پس از آن توسعه داده شد و دستهای از تفسیرها را به وجود آورد. این تفسیر هماکنون همراه با تفسیر کپنهاکی و دیگر تفسیرهای واهمدوسانه یکی از مهمترین تعبیرهای مکانیک کوانتومی است.
نمایشی از چندپارهشدن دنیاها پس از سهبار اندازهگیری اسپین یک الکترون.
به زبان هیو اورت، دستگاه اندازهگیری «د» و سیستم کوانتومی «س» یک سیستم ترکیبشده را میسازند. پیش از اندازهگیری، هرکدام در حالتهای خوشتعریف و البته وابسته به زمان قرار دارند. اندازهگیری به این معنی است که بگذاریم س و د با هم برهمکنش کنند. پس از این که س و د برهمکنش داشتند، دیگر نمیتوان آنها را با حالتهای مستقلی توصیف کرد. به گفتهٔ اِوِرِت، تنها توصیف بامعنی از این وضعیت به کمک حالتهای نسبی است: مثلاً حالت نسبی س اگر حالت د را بدانیم، یا حالت نسبی د وقتی حالت س را بدانیم.
به زبان د ویت، حالت س پس از رشتهای از اندازهگیریها با برهمنهی حالتهای کوانتومیای به دست میآید که هرکدام نماینده تاریخچه متفاوتی از اندازهگیریها روی س هستند.
آزمایش دوشکاف
در مکانیک کوانتومی، آزمایش دوشکاف آزمایشی است که نشان میدهد ماهیت ذرهای و موجی نور و دیگر ذرات کوانتومی از هم جداییناپذیرند. در این آزمایش یک باریکهٔهمدوس نور را به صفحهای که دو شکاف باریک رویش دارد میتابانیم، و نور پس از گذشتن از صفحه روی پردهای که در پشت است میافتد. ماهیت موجی نور باعث میشود که نورهایی که از دو شکاف میگذرند با هم تداخل کنند و یک الگوی تداخلی (نوارهای تاریک و روشن) بسازند. ولی اگر روی پرده نور را با آشکارساز بسنجیم، میبینیم که نور همیشه به شکل ذره (فوتون) جذب میشود.
اگر نور در مسیر خود از چشمه تا پرده تنها ویژگی ذرهای خود را نشان میداد، تعداد فوتونهایی که به هر نقطه از پرده میرسیدند، جمع تعداد فوتونهایی بود که از شکاف سمت چپ و از شکاف سمت راست آمدهاند. به زبان دیگر، شدت نور در هر جای پرده حاصلجمع شدت وقتی است که شکاف سمت چپ را پوشانده باشیم و وقتی که شکاف سمت راست را پوشانده باشیم. ولی آزمایش نشان میدهد که اگر هر دو شکاف را باز بگذاریم، شدت نور در بعضی جاها بیشتر و در بعضی جاها کمتر از انتظار ما خواهد بود. این پدیده نمایانگر تداخل سازنده و ویرانگر امواج نور است، و با ماهیت جمعشدنی ذرات نور قابل توضیح نیست.
هر طور که آزمایش را تغییر دهیم که بخواهیم ببینیم که نور از کدام شکاف گذشته است، طرح تداخلی از بین میرود و نتیجه ذرهای به دست میآید. این پدیده نشاندهنده اصل مکملیت است، که میگوید نور میتواند هم ویژگی ذرهای و هم موجی از خود نشان دهد، ولی نمیتوان همزمان ماهیت ذرهای و موجی را در یک پدیده دید.
آزمایش دوشکاف را میتوان با ابزار آزمایش متفاوت با ذرات مادی مانند الکترون هم انجام داد. با این ذرات هم نتیجه آزمایش مانند پیش خواهد بود که نشان میدهد ذرات مادی هم دوگانگی موج-ذره از خود نشان میدهند.
پایههای نظری و شرح آزمایش
اتو اشترن و والتر گرلاخ سال ۱۹۲۲ در دانشگاه فرانکفورت آزمایشی ابداع کردند تا ببینند که آیا ذرات تکانه زاویهای ذاتی دارند یا نه. در یک سیستم کلاسیکی مانند زمین که به دور خورشید میگردد، زمین دارای تکانه زاویهای است که هم به خاطر چرخش زمین به دور خورشید و هم به خاطر چرخش زمین به دور محور خود است. اگر الکترون مانند یک دوقطبی کلاسیک باشد که به دور محور خود میچرخد، در یک میدان مغناطیسی به خاطر گشتاور ناشی از میدان به دور راستای میدان میچرخد.
اجزای اصلی یک آزمایش اشترن-گرلاخ.
اگر ذره در یک میدان مغناطیسی یکنواخت باشد، نیروی وارد بر دو سوی دوقطبی یکدیگر را خنثی میکنند و مسیر ذره راست میماند. برای پرهیز از نیروی لورنتس که به ذرات باردار درحالحرکت وارد میشود، میتوانیم آزمایش را به جای الکترونهای باردار با اتمهای خنثای نقره که یک الکترون در لایه بیرونی دارند انجام دهیم. هر چند که اگر ذره باردار باشد، با اِعمال یک میدان الکتریکی در جهت مناسب بهسادگی میتوان اثر نیروی لورنتس را از بین برد. از آنجا که آزمایش اشترن-گرلاخ تنها تکانه زاویهای را میسنجد، بار ذرات نقشی در نتیجه آزمایش ندارد.
اما اگر ذره در یک میدان مغناطیسی نایکنواخت باشد، نیروی وارد بر یک سوی دوقطبی کمی بیشتر از سوی دیگر است و نیروی خالصی به آن وارد میشود. این نیرو ذره را در یک جهت منحرف میکند. جهت انحراف را معمولاً در راستای محور "z" میگیرند.
اگر ذرههای آزمایش، ذرات چرخان کلاسیک باشند، سوی بردار تکانه زاویهای آنها تصادفی خواهد بود. از همین رو، هر ذره مقدار متفاوتی به سمت بالا یا پایین منحرف خواهد شد. در این صورت، باریکه ورودی ذرهها روی پرده نوار یکنواختی تشکیل میدهد. ولی در آزمایش دیده میشود که ذرهها تنها به سمت بالا یا پایین و آن هم به مقدار مشخصی منحرف میشوند. این نتیجه نشان میدهد که تکانه زاویهایِ اسپینی گسسته است، و فقط مقدارهای مشخصی به خود میگیرد. طیف پیوستهای از تکانه زاویهای وجود ندارد.
برای توصیف ریاضی ذرهها که اسپین دارند، بهترین راه بهکاربردن نمادگذاری برا-کت است. وقتی که ذرات از دستگاه اشترن-گرلاخ میگذرند، آنها «اندازهگرفته میشوند.» عمل مشاهده در مکانیک کوانتومی معادل است با سنجش آنها. دستگاه اندازهگیری آنها همان آشکارساز اشترن-گرلاخ است که میتواند یکی از دو مقدار ممکن، اسپین بالا یا پایین، را بسنجد. عمل مشاهده متناظر است با اثردادن عملگر Jz. به زبان ریاضی،
آزمایشهای پیدرپی
اگر چند آزمایش اشترن-گرلاخ را پشت سر هم قرار دهیم، به روشنی میفهمیم که آنها با دستگاههای اندازهگیری کلاسیک فرق دارند و حالت ذرهٔ مشاهدهشده را مطابق قوانین کوانتومی تغییر میدهند:
آزمایش گربه شرودینگر:
آزمایش شرودینگر' مفاهیم عمیق فلسفی مکانیک کوانتومی دانشمندان زیادی را به خود جلب کردهاست.
آزمایش چنین است: فرض کنید گربه ای در جعبهای در بسته زندانی است. در این جعبه یک شیشه گاز سیانور، یک چکش، یک حسگر پرتوزا و یک منبع پرتوزا نیز وجود دارد. ذرات پرتوزا بصورت نامنظم تابش میکنند و به همین دلیل برای آنها نیمه عمر در نظر میگیرند. حال فرض کنید حسگر و چکش طوری تنظیم شده باشند که در صورت تابش موج پرتوزا بین ساعت ۱۲ و ۱۲:۰۱، چکش شیشه حاوی گاز را شکسته و گربه بمیرد. اگر در ساعت ۱۲:۰۱ در جعبه را باز کنید چه خواهید دید؟ اگر از طریق فرمول نیمه عمر منبع، احتمال تابش بین ساعت ۱۲ و ۱۲:۰۱ را ۵۰٪ پیش بینی کنید. گربه داخل جعبه در هنگام برداشتن درب جعبه ۵۰٪ مرده است و ۵۰٪ زنده است. اما وقتی درب جعبه را بر میدارید خواهید دید که گربه یا مرده و یا زنده است. نمیتوان گفت ۵۰٪سلولهای بدن گربه مردهاند و ۵۰٪ آنها زنده اند. در فاصله یک لحظه، احتمال به یقین تبدیل خواهد شد. این امر کاملاً متضاد با مکانیک کوانتومی میباشد. همانطور که گفتیم هیچگاه نمیتوان موقعیت یک سیستم را به دقت اندازه گیری نمود. اما در این مثال کاملاً این امر ممکن شده است.
معادله شرودینگر، اساسیترین معادله غیر نسبیتی در مکانیک کوانتومی برای توصیف تحول حالت یک ذره است. معادله شرودینگر سال ۱۹۲۶ توسط اروین شرودینگر به ثبت رسید و پس از او نیز هایزنبرگ معادله برابری را به صورت عملگرهای خطی و عملگرهای جابجایی به وجود آورد. معادله شرودینگر در حالت ساده به صورت زیر است:
